Missile Guidance Training

Missile Guidance Training

Course Delivery

This Course is available in the following format:

Request this course in a different delivery format

GSA Schedule 70 Saving for Government Customers

Course Overview:

Missile Guidance Training Course Description

This Missile Guidance Training presents both fundamental concepts and practical implementation of parallel navigation. It dedicated to missile guidance. The guidance law design is considered from the point of view of control theory, i.e., as design of controls guiding missiles to hit targets. Guidance laws design is considered as design of controls. The design procedure is presented in the time-domain and in the frequency-domain. The different approaches, in the time and frequency domain, generate different guidance laws that supplement each other. The proportional navigation is considered also as a control problem.

A wider class of guidance laws is obtained based on Lyapunov approach. The analytical expressions of the guidance law are given for the generalized planar and three-dimensional engagement models for missiles with and without axial controlled acceleration. The Lyapunov-Bellman approach is used to justify the choice of some guidance law parameters.

The problem of the integrated design of guidance and control laws is discussed. The problem of modification of the existing autopilots is presented as a problem of new guidance laws design. Computational aspects of missile guidance are considered. As an example, the application of the theory to design of the boost-phase interceptors is considered.

The course is based on a book Modern Missile Guidance (Taylor & Francis, London, New York, 2007) by R. Yanushevsky A complete set of lecture notes will be prepared.

Missile Guidance Training – Customize It:

• We can adapt this Missile Guidance Training course to your group’s background and work requirements at little to no added cost.
• If you are familiar with some aspects of this Missile Guidance Training course, we can omit or shorten their discussion.
• We can adjust the emphasis placed on the various topics or build the Missile Guidance Training course around the mix of technologies of interest to you (including technologies other than those included in this outline).
• If your background is nontechnical, we can exclude the more technical topics, include the topics that may be of special interest to you (e.g., as a manager or policy-maker), and present the Missile Guidance Training course in manner understandable to lay audiences.

Missile Guidance Training – Skills Gained:

• About various types of missiles and related problems
• Where the most promising international research is being performed.
• Guidance laws design as a control problem.
• Theoretical aspects and computational algorithms.
• Example of guidance laws for the new generation of interceptors.

Missile Guidance Training – Related Courses:

Missile Analysis Training
Military Standard 810G Training

Missile Guidance Training – Course Content:

Introduction Various types of missiles. Current research efforts

Basics of Missile Guidance. Parallel Navigation

Representation of Motion. Guidance Process. Parallel Navigation. Proportional Navigation. Augmented Proportional Navigation.
Planar engagement. Three-dimensional engagement.

• Analysis of PN Guided Missile Systems in Time and Frequency Domains

Frequency-Domain Analysis. Steady-state Miss Analysis. Weave Maneuver Analysis. Frequency Analysis and Miss Step Response. BIBO Stability. Frequency Response of the Generalized Missile Guidance Model.

• Design of Guidance Laws Implementing Parallel Navigation. Time-Domain Approach

Guidance as a Control Problem. Lyapunov Approach to Control Law Design. Modified Linear Planar Model of Engagement. General Planar Case. Three-Dimensional Engagement Model. Generalized Guidance Laws. Optimal Guidance Laws.

• Design of Guidance Laws Implementing Parallel Navigation. Frequency-Domain Approach

Neo-classical Missile Guidance. Pseudo-classical Missile Guidance.

• Guidance Law Performance Analysis Under Stochastic Inputs

Random Target Maneuvers. Analysis of Influence of Noises on Miss Distance. Effect of Random Target Maneuvers on Miss Distance. Filtering

Integrated Design

Integrated guidance and control model. Synthesis of control laws. Integration and decomposition.

Computational aspects. Examples

Software for Frequency-Domain Approach.

Software for Time-Domain Methods. An example of the boost-phase interceptors design.
Concluding Remarks

• The future trend in developing the new generation of missiles and related problems


Dr. Rafael Yanushevsky received the M.S. in mathematics, M.S. degree in electro-mechanical engineering, and the PhD degree in optimization of multivariable systems from the Institute of Control Sciences of the USSR Academy of Sciences, Moscow, Russia. His research interests were in optimal control theory and its applications (especially in aerospace), optimal control of differential-difference systems, signal processing, game theory and operations research. He started teaching in 1987 at the University of Maryland and at the University of the District of Columbia. Since 1999 he has been involved in projects related to the aerospace industry. He participated in development of engagement model as a part of Battle-Space Engineering Assessment Tool, WCS software, developed new guidance laws. He wrote sections of Modeling and Simulation Handbook related to the weapon control system and fire control system of SM-3 missiles. In 2002 he received Letter of Appreciation from the Department of the Navy, the Navy Area Theater Ballistic Missile Program. He has published over 80 papers, 4 books including Modern Missile Guidance (2007) and Unmanned Aerial Vehicle Guidance & Control, ( 2011). Dr Yanushevsky also teaches for ATI the course Unmanned Aerial Vehicles Guidance & Control He is included in “Who’s Who in America,” “Who’s Who in Science and Engineering,” and “Who’s Who in American Education.”

Whether you are looking for general information or have a specific question, we want to help!

Request More Information

Print Friendly, PDF & Email